Expanding Measures
نویسنده
چکیده
We prove that any C transformation, possibly with a (non-flat) critical or singular region, admits an invariant probability measure absolutely continuous with respect to any expanding measure whose Jacobian satisfies a mild distortion condition. This is an extension to arbitrary dimension of a famous theorem of Keller [37] for maps of the interval with negative Schwarzian derivative. We also show how to construct an induced Markov map F such that every expanding probability of the initial transformation lifts to an invariant probability of F . The induced time is bounded at each point by the corresponding first hyperbolic time (the first time the dynamics exhibits hyperbolic behavior). In particular, F may be used to study decay of correlations and others statistical properties of the initial map, relative to any expanding probability.
منابع مشابه
Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane
We prove the existence of absolutely continuous invariant measures for piecewise real-analytic expanding maps on bounded regions in the plane.
متن کاملRandom perturbations of non - uniformly expanding maps ∗
We give both sufficient conditions and necessary conditions for the stochastic stability of non-uniformly expanding maps either with or without critical sets. We also show that the number of probability measures describing the statistical asymptotic behaviour of random orbits is bounded by the number of SRB measures if the noise level is small enough. As an application of these results we prove...
متن کاملLarge Deviations Bounds for Non-uniformly Hyperbolic Maps and Weak Gibbs Measures
We establish bounds for the measure of deviation sets associated to continuous observables with respect to weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms.
متن کاملSrb Measures for Weakly Expanding Maps
We construct SRB measures for endomorphisms satisfying conditions far weaker than the usual non-uniform expansion. As a consequence, the definition of a non-uniformly expanding map can be weakened. We also prove the existence of an absolutely continuous invariant measure for local diffeomorphisms, only assuming the existence of hyperbolic times for Lebesgue almost every point in the manifold.
متن کاملExpanding the health care in deprived areas in Iran:policies and challenges
Health is the axis of the social, economic, political and cultural development of all human societies and has particular importance in the development of the infrastructure of different sections of society. The final goal of any country's health care system is to improve the health of its people. Equal access to health services and equitable distribution of health resources is one of the main g...
متن کاملPhase Transitions for Uniformly Expanding Maps
Given a uniformly expanding map of two intervals we describe a large class of potentials admitting unique equilibrium measures. This class includes all Hölder continuous potentials but goes far beyond them. We also construct a family of continuous but not Hölder continuous potentials for which we observe phase transitions. This provides a version of the example in [9] for uniformly expanding maps.
متن کامل